
Instantiating BitVM3 from Label Forward Propagation

Alva Fu1, Stephen Duan1,2, Ethan Zhu1

1. GOAT Network
2. ZKM

Abstract. BitVM3 optimizes off-chain verification of SNARK proofs on Bitcoin by replacing Delbrag’s
symmetric encryption in garbled circuits (GC) with RSA-based homomorphic encryption. This elimi-
nates the need for costly zero-knowledge proofs to verify entire GC correctness and removes Delbrag’s
single-use constraint. In this work, we further enhance BitVM3 by introducing a reusable circuit gar-
bling scheme, which addresses the bottleneck of excessive off-chain data—slashing requirements by 3–4
orders of magnitude (from terabytes to megabytes)—making the solution economically viable. Addi-
tionally, we implement several other optimizations: a forward-pass GC generation flow to halve per-gate
data, enabling unlimited reuse of GC off-chain data, and formalizing the protocol. These collectively
resolve prior scalability issues while maintaining compact on-chain transactions.

Keywords: BitVM3, garbled circuits, verification on Bitcoin, layer 2

1 Background

BitVM3[1] extends BitVM2[2]’s optimistic computation model—which assumes operators are hon-
est unless challengers submit fraud proofs on Bitcoin—by leveraging Garbled Circuits (GC)[3] for
encrypted-state computations.

Delbrag pioneered the use of Yao’s GC for SNARK(Groth16) verifier while enabling efficient
on-chain verification of circuit correctness. The Garbler, acting as an operator in BitVM, constructs
a GC and performs the following Protocol:

1. The Garbler commits all input/output labels on Bitcoin and publicly discloses GC cipher-
texts with a ZKP[4] proving consistency between committed labels and published ciphertexts.

2. To verify a valid proof on-chain: a) The Garbler reveals the proof in plaintext on-chain. b)
If challenged (validity disputed), the Garbler then reveals the corresponding input labels. c)
Compute the GC circuit with revealed labels to derive the output label. d) If the output label
corresponds to 0 value, the challanger successfully disproves the operator’s reimbursement.

Delbrag significantly reduces on-chain overhead: assertion transactions are 1̃00kB, while dis-
proval transactions are merely 32 bytes—a 1,000× cost reduction compared to BitVM2. However,
Delbrag’s classical symmetric encryption for GC construction incurs substantial off-chain burdens:

– The ZK verifier Boolean circuit contains 5̃ billion gates, requiring hundreds of GB of published
GC ciphertext.

– Proving GC correctness off-chain via ZKP is economically infeasible.

– Single-Use Constraint: Only one valid input label set (yielding output = 1) can be revealed.
Revealing labels for invalid proofs (output label corresponding to 0) would expose cheating,
limiting practical utility.

BitVM3 improves Delbrag[5] by replacing symmetric encryption with RSA. Leveraging RSA’s
multiplicative homomorphism, it constructs homomorphic GC circuits where intermediate/output
labels retain exponentiation properties when input labels are raised to a power. This enables

https://goat.network
https://zkm.io
https://bitvm.org/bitvm3.pdf
https://bitvm.org/bitvm2.html
https://research.cs.wisc.edu/areas/sec/yao1982-ocr.pdf

a“reblinding” technique: one set of labels validates circuit correctness, while a ZKP proves commit-
ted on-chain input/output labels maintain homomorphic relationships—indirectly ensuring valid
GC construction without ZKP verification. Key advantages include:

– Eliminating the cumbersome ZKP for GC correctness.

– Enabling multiple GC reuses (though usage counts must be predetermined, limiting flexibility).

Notably, RSA’s larger bit-width increases off-chain data to terabytes (TB), leaving scalabil-
ity unresolved. This paper proposes sub-circuit reuse to dramatically reduce off-chain data. Since
Groth16 verification predominantly repeats modular multiplication (3̃0,000 times), reusing a sin-
gle sub-circuit’s GC data while publishing only input labels for subsequent invocations reduces
off-chain data by 3–4 orders of magnitude. Our scheme renders BitVM3 fully practical, with addi-
tional optimizations including:

– GC generation reversal: Switching from output→input to input→output label generation,
halving per-gate data (4 → 2 values).

– Unconstrained reuse: Eliminating preset usage limits for flexible GC recycling.

– Complete protocol specification: Providing a comprehensive framework where BitVM3 cur-
rently lacks formalization.

2 Encrypting a Gate

2.1 Label generation for two-input Boolean gates

The truth table of a Boolean gate can be represented in Table 1, where zi denotes a single-bit value
0 or 1.

Table 1: Boolean Gate Truth Table

Input a Input b Output c

0 0 z0
0 1 z1
1 0 z2
1 1 z3

For input wires a and b, their 0/1 labels are denoted x(a)/y(a) and x(b)/y(b) (if they are initial
circuit inputs, the labels are randomly generated; if they are intermediate values, they are computed
from previous gates).

The Garbler selects and publishes an RSA modulus N = p · q with secret primes p, q and public
exponents: e, e1, e2, e3, e4 (invertible modulo ϕ(N)). Output labels are computed using the formula
from BitVM3 below. This approach differs from the BitVM3 protocol, where output labels are used
to compute input labels, whereas our method calculates output labels directly from input labels.

c0 = x(a)e · x(b)e1 mod N

c1 = x(a)e · y(b)e2 mod N

c2 = y(a)e · x(b)e3 mod N

c3 = y(a)e · y(b)e4 mod N.

(1)

Obtaining the truth table expressed with labels in Table 2.

2

https://bitvm.org/bitvm3.pdf

Table 2: Garbled Truth Table

Input a Input b Output c

x(a) x(b) c0
x(a) y(b) c1
y(a) x(b) c2
y(a) y(y) c3

We then introduce output adaptors to unify the output labels of a gate, enforcing that each
gate outputs two labels. Let o0, o1 be the first output label among c0, c1, c2, c3 corresponding to
plaintext 0 and 1 respectively. For other 0 ciphertexts and 1 ciphertexts, normalize them to o0 and
o1, respectively:

– If ci encodes 0, apply output adaptor o0/ci;

– If ci encodes 0, apply output adaptor o1/ci.

For all gates that are neither constant 0 nor constant 1, two output adaptors are needed to unify
the output labels. Through two output adaptors, we can obtain the final truth table with labels
(outputs labels expressed only using o0 and o1). Taking gate AND as an example, the final truth
table of adapted garbled table is shown in Table 3:

Table 3: Adapted Garbled Table

Input a Input b Output a ∧ b Output Adaptor

x(a) x(b) o0 = c0 /

x(a) y(b) o0 o0/c1
y(a) x(b) o0 o0/c2
y(a) y(y) o1 = c3 /

2.2 Application Scenario of On-Bitcoin Verification and NOT Gate Handling

When verifying computation correctness via GC on Bitcoin, the Garbler (i.e., Prover) reveals input
labels corresponding to valid inputs, enabling the Evaluator (i.e., Verifier) to execute the GC circuit
and derive output labels. If the derived labels mismatch the expected output, this indicates prover
fraud.

Unlike traditional GC applications of protecting input plaintext, verification on Bitcoin requires
public disclosure of the 0/1 semantics for committed input/output labels. During GC evaluation,
the Evaluator always knows the plaintext values of each gate’s input labels, thus determining
adaptor usage to adjust output labels while tracking their plaintext meanings. Concurrently, the
Garbler must avoid exposing both labels of any input wire to prevent the Evaluator from computing
adversarial output labels that trigger penalties.

For a 2-input GC gate, we denote:

– Input labels: x(a), y(a), x(b), y(b);

– Output adaptors: a0, a1;

– Output labels: o0, o1.

The output adaptors are public. Given input labels z(a) ∈ {x(a), y(a)} and z(b) ∈ {x(b), y(b)}
(revealed by the Garbler or computed from prior gates), the Evaluator:

3

1. Computes the output label c using Equation (1) without adaptors;

2. Uses the plaintext truth table to select the appropriate adaptor a ∈ {1, a0, a1};
3. Compute the output label as a · c, and record its plaintext meaning according the plaintext

truth table.

For the single-input NOT gates, the Garbler requires no cryptographic computation during GC
construction—only semantic inversion of label meanings (0→1, 1→0) for subsequent gates. The
Evaluator similarly performs semantic inversion during evaluation. Consequently, NOT gates are
free in our GC construction (no cryptographic operations or extra data needed).

3 GC: Encrypting a Boolean Circuit

We demonstrate multi-gate composition in a GC circuit using a 2-bit adder example.

Given inputs (in0, in1), (in2, in3), representing values:

a = 2 · in1 + in0, b = 2 · in3 + in2.

The 3-bit output (out2, out1, out0) represents:

4 · out2 + 2 · out1 + out0 = a+ b.

Example: 2+3=5 encodes as (1,0)+(1,1)=(1,0,1).

3.1 Converting to Boolean Circuit

We will use the following three binary gates: XOR ⊕, AND ∧, OR ∨ in Table 4.

Table 4: ⊕,∨,∧ Truth table

Input a Input b Output a⊕ b Output a ∧ b Output a ∨ b

0 0 0 0 0

0 1 1 0 1

4 0 1 0 1

4 1 0 1 1

A 2-bit adder can be constructed using seven gates g0 to g6 with the Boolean circuit diagram
shown in Figure 1.

3.2 Constructing the GC Circuit

The Garbler constructs the GC of the above 2-bit addition.

First, the Garbler generates two random values (labels) for each input bit in0, in1, in2, in3:
x(in0), y(in0), x(in1), y(in1), x(in2), y(in2), x(in3), y(in3).

Then the Garbler calculates gate-by-gate using the calculating formulas and output adaptor
rules. Let a0(g), a1(g) represent the two output adaptors corresponding to gate g.

4

Fig. 1: A 2-bit Adder Circuit

– The Garbler first uses the input labels to calculate g0, g1, g2, g3, deriving the output labels
of out0,mi(i = 0, 1, 2): x(out0), y(out0), x(mi), y(mi) and output adaptors: a0(gi), a1(gj), j =
0, 1, 2, 3 for each gate.

– Then, the Garbler uses the labels of m0,m1 to compute g4, g5, obtaining the gate output labels
x(out1), y(out1) and x(m3), y(m3), as well as the gates’ output adaptors a0(gk), a1(gk), k = 4, 5.

– Finally, the Garbler uses the labels of m2,m3 to compute g6, obtaining the gate output labels
x(out2), y(out2) and the output adaptors a0(g6), a1(g6) for g6.

3.3 Evaluating the GC

A GC is described through input labels, output adaptors for all gates and output labels. Given a set
of input labels for 2-bit adder: z(in0), z(in1), z(in2), z(in3) (z = x or y, 1 label for each variable),
the Evaluator can use all the output adaptors of the circuit gates to perform the computation and
obtain a set of output labels: z(out0), z(out1), z(out2).

Simulate 2 + 3 = 5: using input labels x(in0), y(in1), y(in2), y(in3), evaluating the circuit
derives output labels y(out0), x(out1), y(out2).

4 Reblinding Schemes for GC

4.1 Input Adaptors

Adapters can align input labels between GC or sub-GC circuits. When applied to input labels of
circuit/sub-circuit, such adapters are termed input adaptors.

Consider two GC/sub-GC circuits with their respective input labels, output adaptors, and
output labels denoted as (L,A,O) and (L′, A′, O′). Using the input adaptor B = L/L′, the input
labels L′ can be transformed into L, yielding the GC circuit (L,A,O). This conversion leverages the
homomorphic properties of GC construction to reuse portions of the circuit description, thereby
reducing communication complexity.

5

4.2 Reblinding the Sub-GC

GC construction with input adaptors. Consider a Boolean circuit C that repeatedly invokes
sub-circuits Ci, i = 1, 2, · · · , n, where each Ci is called ki times.

Now, the Garbler first choose ki reblinding factors ui,j for sub-circuits Ci. Given input labels
L, the Garbler construct the GC with the following two modification:

– The Garbler record the input labels Li, the output adaptor Ai, and the output labels Oi for
the first invocation of sub-circuits Ci before using reblinding factor ui,1 for adjustment.

– For the j-th invocation (j = 1, 2, · · · , ki) of sub-circuits Ci, using the input adaptor Bi,j =
L
ui,j

i /Li,j (where Li,j is the input labels before adjustment), the Garbler adjusts the input labels
from Li,j to L

ui,j

i . (The first invocation of sub-circuits Ci also needs to adjust the input labels
from Li to L

ui,1

i during the GC construction.)

We clarify that only the input labels of reused sub-circuits are adjusted. When these labels are used
as inputs to other gates in the circuit, they remain unchanged.

GC Description. Now the new GC description comprises:

– Input labels L for the main circuit,

– Output adaptors A (excluding reused sub-circuits),

– Triples (Li, Ai, Oi) for the unadjusted GC of first invocation to sub-circuit Ci,

– Reblinding factors ui,j and input adaptors Bi,j ,

– Output labels O.

GC Evaluation. Though we omit detailed description of the GC tuple (L′
i,j , A

′
i,j , O

′
i,j) for the j-th

invocation of Ci, the input adaptors yield:

L′
i,j = Li,j ·Bi,j = L

ui,j

i .

Leveraging homomorphic properties in our GC construction – specifically multiplicative/divisional
composition of gate labels, output adapters, and input adaptors – we establish:

A′
i,j = A

ui,j

i , O′
i,j = O

ui,j

i .

Thus, given A, (Li, Ai, Oi), ui,j , Bi,j , the Evaluator can evaluating the GC with per-bit input labels
L∗ ⊂ L, and derive the corresponding per-bit output labels O∗ ⊂ O .

5 Instantiating BitVM3 Schemes

5.1 Scheme Description

Suppose the Groth16 verification circuit C repeatedly invokes sub-circuits Ci, i = 1, 2, · · · , n, with
each Ci being called ki times, the Garbler constructs the GC with randomly chosen input labels L:
(L,A, (Li, Ai, Oi)i=1,2,··· ,n, ui,j , Bi,j , O).

Then the Garbler selects two global reblinding factors u, v, and:

– Publishes commitments of Lv, Ov on-chain;

– Publishes off-chain: A, (Li, Ai, Oi), Bi,j , u, v, L
u, Ou, ui,j ;

– Generates ZKP proving: (Lv)u = (Lu)v, (Ov)u = (Ou)v and Lv, Ov are consistent with the
on-chain commitments.

6

The GC with input labels Lu is used to verify the consistency of the plaintext, while the GC
with input labels Lv constructs an on-chain verification. The validity of committed labels Lv, Ov is
guaranteed by the homomorphic properties between the input-output labels Lu, Ou and Lu, Ou.

The Evaluator verify:

– (Lu, Au, (Lu
i , A

u
i , O

u
i), B

u
i,j , O

u, ui,j) compose a valid GC;

– ZKP proof is valid.

Without revealing Lv, Ov, we can make sure the committed Lv, Ov are consistent with a valid GC
and the corresponding output adaptors and input adaptors are Av and Bv

i,j . When the Garbler
reveal a set of valid labels (one for each wire) L∗ ⊂ Lv, the Evaluator can evaluate the GC using
output adaptors Av, input adaptorsBv

i,j , and sub-circuit GC (Lv
i , A

v
i , O

v
i), deriving the output labels

O∗ ⊂ Ov.

Through choosing a different value v, committing to new input/output labels on Bitcoin, and
propose corresponding ZKP proof about homomorphism between committed input/output labels
and Lu, Ou, the scheme can be used again.

5.2 Complexity Analysis

The Groth16 verification circuit on the BN254 curve comprises approximately 15 billion gates
and executes ∼ 30, 000 modular multiplications. Each modular multiplication operation requires
∼ 700, 000 gates, with RSA modulus of 256-byte. Communication complexity is analyzed as follows:

– On-chain complexty follows BitVM3’s analysis: 56kB (revealing a set of commited input labels
corresponding to plaintext proof) for ‘assertTx’ and 256 bytes (output label corresponding to
0 output) for ‘disproveTx’.

– Off-chain complexity total ∼ 8GB dominated by adaptor materials of modular multiplication:

• Output adaptors for one modular multiplication 700, 000× 2× 256 ≈ 350MB;

• Input adaptors for 30,000 times modular multiplication 30, 000×2×2×256×256 ≈ 7.7GB.

The current 8GB off-chain data requirement remains prohibitively large for large-scale appli-
cations. In subsequent versions, we will implement nested reuse of submodule to reduce off-chain
data by a factor of 10 to 100.

References

1. R. Linus, “BitVM3: Efficient computation on Bitcoin,” https://bitvm.org/bitvm3.pdf, 2025, [Online; accessed
2025].

2. R. Linus et al., “BitVM 2: Permissionless Verification on Bitcoin,” https://bitvm.org/bitvm bridge.pdf, 2024,
[Online; accessed 2025].

3. A. C. Yao, “Protocols for Secure Computations,” https://research.cs.wisc.edu/areas/sec/yao1982-ocr.pdf, 1982.
4. J. Groth, “On the Size of Pairing-based Non-interactive Arguments,” https://eprint.iacr.org/2016/260.pdf, 2016,

[Online; accessed 2025].
5. J. Rubin, “Delbrag,” https://rubin.io/public/pdfs/delbrag.pdf, 2025, [Online; accessed 2025].

7

https://bitvm.org/bitvm3.pdf
https://bitvm.org/bitvm_bridge.pdf
https://research.cs.wisc.edu/areas/sec/yao1982-ocr.pdf
https://eprint.iacr.org/2016/260.pdf
https://rubin.io/public/pdfs/delbrag.pdf

	Instantiating BitVM3 from Label Forward Propagation

