
GOAT BitVM2 White Paper

GOAT Network Research Group

Email: contact@goat.network

May. 2025 - Draft Version 0.3

Abstract. The BitVM2 protocol has been adopted by many Bitcoin Layer 2 solutions, but it still faces
several practical challenges in building zkRollups. The GOAT Network team has proposed the GOAT
BitVM2, which, with the 1-of-n honest assumption, introduces a multi-round randomized challenge
mechanism and a sequencer set commitment scheme to address the open problems in BitVM2, namely,
the operator’s Double-spending attack, the inability to support withdrawals of arbitrary amounts,
inefficient challenge selection, and the absence of a systematic incentive model.
By introducing zkMIPS, we generate the proof for each L2 block, and aggregate all the block proofs on
demand for the operator when it kicks off a reimbursement. This can reduce the time for an operator’s
proof generation to about 40 seconds.
By introducing Universal Operator, an abstract role of BitVM2 operator, BitVM2 challenger and de-
centralized sequencer, this can balance the risks and benefits of different specific roles, and attract more
entities to join the optimistic challenge process. This achieves a robust systematic incentive model and
enhances the soundness of BitVM2 protocol.
These enhancements are designed to strengthen the reliability and scalability of the protocol, thus
promoting the broader adoption of BitVM2 in the Bitcoin Layer 2 ecosystem.

Keywords: GOAT Network, BitVM2, zkMIPS, zkRollup, Cross-chain Bridge

1 Introduction

BitVM[1] and BitVM2[2], proposed by Robin Linus et al., establish a trust-minimized bridge pro-
tocol for Bitcoin [3], enabling its sidesystems through a fraud-proof arbitration mechanism without
a hard fork under 1-of-n honesty assumption1, using presigned transactions, one-time signatures,
and SNARK proofs.

Serving as the cryptographic foundation for cross-chain bridges and zkRollup, the original
BitVM2 protocol achieves two key breakthroughs: 1) Maintaining Bitcoin’s base layer integrity
without protocol forks under 1-of-n honesty assumption; 2) Compared to BitVM, BitVM2 allows
anyone to challenge and slash a faulty operator with 3 on-chain transactions, with a delay of no
more than 2-3 weeks, thus enabling a relatively capital-efficient improvement.

Despite its adoption by many Bitcoin L2 projects, BitVM2 faces some critical challenges in
practical zkRollup implementations. We illustrate these challengers from the key roles perspective
below.

Operator. The operator’s double-spending attack, an operator can fork the L2 blockchain, generate
zk-proofs for the fork, and manipulate computation proofs for double-spend attacks. For any honest
operator, it needs to generate a proof for each reimbursement, and the peg-in to kick-off duration

1 1-of-n honesty assuption: for m operators, only one operator is required to keep liveness; for n challengers, only one
challenger is required to behave honestly, namely a honest challenger should be obliged to challege the a dishonest
operator’s reimbursement

contact@goat.network
contact@goat.network

may last for serveral months, and makes the operator cannot generate a validity proof in short
time.

Challenger. An inefficient challenge process requires about 2-week dispute periods, the operator
and the challenger need to lock their asset on Bitcoin during the period; a worse case is that the
initial challenger and disprove executor are probably not the same entity, and this may crash the
challenger’s spirit to dispute the malicious reimbursement.

Our work aims to address these challenges through three architectural innovations on BitVM2
and for BitVM2, especially for Bitcoin zkRollups, such as GOAT Netowrk2.

Decentralized Sequencer Commitment Scheme in Bitcoin. BitVM2 assumes that the sidesys-
tem is trusted. Observe two facts, 1) a sidesystem should have its own consensus mechanism to
maintain its liveness and security; 2) the sidesystem should be able to release its verifiable logic
to users, and users can decide if choosing the verified logic to create a covenant for the follow-up
presigning or peg-out. However, there is an obvious gap for Bitcoin and sidesystems using BitVM2
bridge: we cannot trust the operator’s public inputs3, and we cannot commit all public inputs when
users deposit assets to sidesystem. We introduce the Decentralized Sequencer Commitment Scheme
to commit the public inputs between user’s Peg-in and operator’s Kick-off and enforce that public
inputs are used in Assert transaction. Instead of computing f(w) = y, we need to compute f(x, w)
= y, where x is the public input.

Universal Operator Abstraction. There are three main roles in BitVM2, Operator, Challenger,
and Committee. For sidesystems, especially zkRollups, there is at least one sequencer, who is
employed to pack the transactions into a block, execute the block, and seal the block. For all above
four roles, we introduce the Universal Operator to play all four critical roles. This can balance the
risk and benefits of all the entities and make the entire system more stable and robust.

Multi-round Randomized Challenge Mechanism. Based on Universal Operator Abstraction
with the constraints of 1-of-n honestly assumption, the traditional BFT consensus algorithm does
not work. We introduce a cryptographic sortition to allow all the challengers to generate a random
and publish the random, and we take some polices to choose a unique challenger to verify the
operator’s reimbursement and decide if any challenge is necessary. If this challenger does not do
anything, we play another round, and make sure enough rounds should be finished to ensure at least
one honest challenger is elected. We do the same for the Disprove transaction. This randomized
selection can reduce the challenge-response game from 1-2 weeks to 1 day with high confidence.

2 Background and Building Blocks

2.1 zkRollup

A zkRollup (Zero-Knowledge Rollup) is a layer-2 scaling solution that enhances blockchain scala-
bility by moving computation and state off-chain while storing transaction data on-chain.

2 GOAT Network: empowering a decentralized economy with sustainable yield, robust security, and a thriving
ecosystem, https://goat.network

3 Public inputs: a virtual machine reads the inputs, runs the logic and generates the outputs. For a zkVM, to commit
the inputs, public inputs are introduced, which usually consist of a part of the inputs and all outputs

2

An essential requirement of a zkRollup is that the L1 acts as a settlement layer and is able to
verify the L2’s transaction. A zkRollup should allow any user to withdraw their asset from L2 to
L1 anytime.

In the context of Bitcoin and BitVM2, a zkRollup is still possible. BitVM2 enables the optimistic
verification of arbitrary computations, and this computation is the verification of a SNARK Proof,
such as Groth16, or Fflonk specifically. This stack is beyond the traditional zkRollup, however, it
is still a zkRollup architecture from our perspective, 1) All the L2’s states should be published to
Bitcoin; 2) all the computation can be committed by zk-proofs, and Bitcoin can verify the proofs
by BitVM2.

We illustrate a basic zkRollup workflow in Fig.1.

Peg In
In L1 covenant

L2 State Publish
On L1

Mint Tokens
 On L2

Activities on L2
With presigned BitVM2

reimbursement transaction flows Peg Out
Fig.3 for details

Fig. 1: zkRollup with optimistic fraud proof

Peg In. A user deposits Bitcoin by generating a BitVM2 transaction flow, namely the Bitcoin
covenant, and L2 nodes monitor this deposit and generate a Mint event on the L2 network. Finally,
the user gets the WrappedBTC on L2.

Transaction ordering and block building. A sequencer orders L2 transactions and constructs
the corresponding L2 block, broadcasting it to other nodes to achieve consensus on the next block.

State difference publishing. The sequencer periodically publishes the state differences from L2
transaction execution on L1.

Peg Out. When the user withdraws WrappedBTC on L2 to Bitcoin, it starts a reimbursement
process, burns the equivalent WrappedBTC on L2, and triggers the BitVM2 covenant on L1, which
is described in Fig. 3.

In summary, any zkRollup that uses the BitVM2 protocol must address the following three
baselines: Liveness, Security, and Effectiveness.

Liveness. Use a consensus protocol to ensure the liveness of the BitVM2 operator, challenger, com-
mittee, and sidesystem sequencer. The protocol should follow up the BitVM2’s honesty assumption.

Security. Achieve BTC-level finality by generating zero-knowledge proofs of off-chain computa-
tions and verifying them on Bitcoin. 1) L2 Computation Verifiability: Ensure that any off-chain
computation can be verified, that is, both the execution of all L2 blocks and their consensus system
should be validated on L1. 2) Available Escape Hatch: In extreme situations, all users must be able
to safely withdraw their assets under any condition.

Effectiveness. All participants’ behaviors must be efficient and sustainable. Through effective
incentive and penalty mechanisms, the system must ensure that at least one honest participant can
participate in every critical step, allowing the system to operate continuously and sustainably over
the long term.

3

Peg-Out-Confirm

1 BTC connector-6

Peg-In-Deposit

 Alice
100BTC

100BTC
connector-z

Peg-Out

Oprator
99BTC withdrawer

Kickoff1

connector-6

connector-a

1 BTC
connector-1

connector-2

Challenge

connector-a
Operator

1 BTC
1BTC

Disprove

1 BTC
connector-5 burn, 50%

connector-c
f(z6) != z7 reward, 50%

Disprove-Chain

1 BTC
connector-b

burn, 50%

reward, 50%

Take-1

100 BTC
connector-0

Operator
101 BTC

connector-a

connector-3

1 BTC
connector-b

Take-2

100 BTC
connector-0

Operator
101 BTC

connector-4

1 BTC
connector-5

connector-c

Peg-In-Refund

connnector-
z Alice 100BTC

Peg-In-Confirm

connnector-
z

100BTC
connector-0

StartTime

connector-2 Operator

StartTime-Timeout

connector-2 burn, 95%

1 BTC
connector-1 reward, 5%

Kickoff2

1 BTC
connector-1

commit y

connector-3

1 BTC
connector-b

Kickoff-Timeout

connector-1

burn, 95%

reward, 5%

In 2 weeks

in 2 weeks

In 3 days

crowdfunding
sighash_single | anyonecanpay

AssertInitial

1 BTC
connector-b

1 BTC
connector-d

connector-e-1...

connector-e-2...

AssertCommit1

connector-e-1...
commit x, z1... connector-f-1

AssertCommit2

connector-e-2...
commit z100... connector-f-2

AssertFinal

1 BTC
connector-d connector-4

connector-f-1 1 BTC
connector-5

connector-f-2 connector-c

any verifier

any verifier

any verifier

Blue: committee pre_signed
Pink: operator pre signed

any verifier

operartor
any utxo

Fig. 2: Original BitVM2 Bridge Protocol

2.2 BitVM2 Protocol Overview

As shown in Fig.2, BitVM2 uses the presigned transaction flow to achieve logic persistence, and
uses the one-time signature [4] to implement storage persistence. In combination with timelock and
Taproot, BitVM2 can be used to implement trust-minimized bridge protocol between Bitcoin and
other L2.

The overview of BitVM2 protocol is as follows:

1. Users initiate a Peg-In-Deposit transaction. The operator must promptly initiate a Peg-In-
Confirm transaction to respond to the user’s action, and the L2 network will mint the cor-
responding assets. If the operator does not respond in time, after a certain period, users can
initiate a Peg-In-Refund transaction to redeem their locked L1 assets.

2. When users burn L2 assets, the Operator initiates a Peg-Out transaction on L1 to advance
payment to the user. The Operator then initiates a Peg-Out-Confirm transaction to ensure
successful reimbursement and follows with a Kickoff1 transaction, immediately publishing a
StartTime transaction. If the StartTime transaction isn’t published promptly, any sequencer
can issue a StartTime-Timeout transaction to terminate Kickoff1.

3. After two weeks, the operator can initiate a Kickoff2 transaction. If the Challenger and Oper-
ator observe different SuperBlocks, the Challenger can initiate a Disprove-Chain transaction to
contest the behavior.

4

4. If the zk-proof is valid and no challenge occurs within three days, the operator can submit a
Take1 transaction to get reimbursed, following the optimistic path, namely the happy path.

5. If the challenger finds the zk-proof invalid, they can initiate a Challenge transaction, and the
operator must respond with an AssertInitial transaction. Subsequently, AssertCommit1 and
AssertCommit2 transactions are published, followed by an AssertFinal transaction, namely the
unhappy path.

6. If the operator behaves maliciously, the challenger can submit a Disprove transaction based on
the ambiguity commitment to prevent the operator’s malicious act. If no Disprove transaction
is submitted within two weeks, the operator can issue a Take2 transaction to be reimbursed
successfully.

2.3 zkVM and zkMIPS

zkVM (Zero-Knowledge Virtual Machine) is a cryptographic system that enables verifiable compu-
tation by generating a zk-proof for arbitrary program executions. It allows developers to write code
in high-level programming languages (e.g. Rust, Go) and compile it into instructions compatible
with specific Instruction Set Architectures (ISAs). The zkVM executes these instructions, gener-
ates a trace of the execution recording register states and memory accesses at each clock cycle, and
produces a succinct proof to validate the correctness of the computation without revealing sensitive
data. Key components include zkCompiler, Prover and Verifier.

zkCompiler: Compile high-level code into ISA-specific binaries (e.g. MIPS, RISC-V), generate
execution traces, and convert the traces into polynomials for constraint satisfaction check.

Prover: Commit the polynomials, and generates zk-proofs. Compared to native execution, the
Zero-knowledge proving is slower by 100-1000x nowadays. Hardware acceleration, Continuation4,
and pipelined proving are exploited to reduce computing overhead and latency.

Verifier: A program to verify the zk-proof, written by a smart contract or Bitcoin covenant,
ensuring trustless verification.

Compared to specialized zkEVMs (which are EVM-equivalent), zkVMs are architecture-agnostic
and support a broader range of applications, including zkRollups, cross-chain interoperability, and
verifiable AI.

zkMIPS [5] is a production-grade zkVM based on the MIPS32r2 instruction set, a stable RISC
architecture known for deterministic execution and minimal circuit overhead. Developed by ZKM5,
it optimizes zero-knowledge proof generation through efficient zkCompiler, pipelined proof archi-
tecture, and cutting-edge proof system, ensuring high instruction proof efficiency and reduced audit
requirements.

For GOAT BitVM2, we generate the proof for each block using zkMIPS’ Real-time proving
initiative on Ethproofs6, and aggregate all block proofs on demand for the operator when it kicks
off a reimbursement.

Formally, for any block i, pi is the time to generate a proof for this block, C is the constant
time to aggregate any two block proofs. Let a(i, j) be the time to generate an aggregated proof

4 Continuation: https://docs.zkm.io/design/continuation.html
5 ZKM: https://zkm.io
6 Ethproofs: Progressing towards fully SNARKing the L1, https://ethproofs.org/

5

from block i to j, i ≤ j. We aim to minimize the total proving time a(0,m), where m is the block
that includes the operator’s burning transaction, by formula 2.3:

a(i, j) =

{
pi, if i = j

max{a(i, j − 1), pj}+ C, if i < j <= m

where we consider the fact that most L2s have a very short blocktime, e.g. 3s, when a new block
produed, the previous block may not be proven, but must be executed by the ISA emulator(the exe-
cution is extramly fast, recall that the proving is about 100-1000x slower than the native execution),
and once a block is executed, all the chunks can be dispatched to a cluster-level in-parallel proving.
Finally, we wrap the aggregated proof into a SNARK proof, which requires another constant time
D.

From our experiment with GPU acceleration enabled, C is about 10s, D is about 5s, andmax{pi}
is about 25s for a block with 100 transactions, the total time to generate a proof for the operator
would be about 40s. This makes GOAT BitVM2 practical to serve as a Bitcoin zkRollup.

3 Model Design and Assumptions

3.1 Open Problems in BitVM2 and Bitcoin zkRollup

From our observations, there are some open problems when we use BitVM2 to build a zkRollup on
Bitcoin.

Operator Double-spending Attack. Currently, in the BitVM2 protocol, the user commits the
zk-proof verifier (Groth16 verifier specifically) circuit when they peg in, and the operator publishes
the proof and output y to spend the pegged Bitcoin. However, y may represent a computation result
that is verifiable but incorrect. For example, the sidesystem might experience a fork, and the forked
chain could still be used to produce valid proofs, thus the operator could complete a withdrawal
and carry out a double-spending attack. The root cause of this attack comes from the truth that
public inputs can not be determined in the Peg-in transaction, and the operator’s commitment y
can be manufactured by the above fork attack.

Inefficient Reimbursement. A single stake corresponds to a single Kickoff and a separate chal-
lenge, causing large presigning computation burdens for Operators and Committees during multiple
Kickoff events.

Unable to support arbitrary-amount Peg-Out. if a user’s asset on the sidesystem cannot match
a Peg-In transaction, they cannot exit BTC from L2 to L1.

Moreover, the optimistic challenge periods are long, leading to low capital efficiency for the
Operator. The reasons for this include: 1) a lack of an efficient and secure consensus mechanism
among challengers; 2) inefficient proof generation, most of the zkVMs nowadays are not able to
produce real-time proofs when an operator kicks off a reimbursement.

Lack of Incentive Mechanism. BitVM2 lacks a reasonable incentive mechanism for real-world
systems. This may lead to some critical security problems if there are not enough challengers or
operators to join the network. For example, if no fraud happens for a long time, the challenger can
not get enough incentive and may choose to quit the protocol.

6

A special issue is that challengers may not receive rewards. When crowdfunding for the Challenge
transaction, the initial challenger may not end up being the one who submits the final Disprove
(usually a Bitcoin miner will apply a front-running attack to get the rewards), which means that
the staked funds might not be correctly allocated to the honest challenger.

4 GOAT BitVM2 Design

GOAT BitVM2 aims to build a native Bitcoin zkRollup on BitVM2, GOAT Network’s decentralized
sequencer, and ZKM’s zkMIPS proof network.

In this section, we define the problem and describe the complete protocol.

4.1 Design Overview

Define the problem. Instead of computing f(w) = y, we extend this model to calculate f(x, w) =
y, where x is the public input. The offchain computation f is presigned/committed at Peg-in phase,
w and y are committed in the operator’s Kick-off transaction, and x should be committed by the
sidesystem between Peg-in and Kick-off transaction. In order to switch the context from general
BitVM2 to GOAT BitVM2, we use Layer 2 (L2) to represent sidesystem in the following sections.

Define the public input. The public input is used to commit the proof and inputs. For a L2,
the chain’s states can be committed by block hash, and the block hash is signed by the at 2/3 of
L2 sequencers, given that most L2s are using BFT-based consensus algorithms.

Since the public input is committed before Kick-off transaction, it should be immutable before
the Kick-off transaction confirmed.

With the above two constraints, we can define the L2 sequencer’s public keys as the public input
and select the sequencers round-by-round periodically. For each epoch, the committee publishes the
sequencers in the next one or two weeks.

Commit the public input. Consider the fact that the public input comes from L2, L2 should
be able to ensure the correctness and validity of all public inputs. In combination with BitVM2’s
committee setting, we use the committee to submit the public input by Threshold Signature Scheme
(TSS)7. A trusted setup ceremony should be created to commit the TSS’ public key, which is
committed in a P2WSH owned UTXO via a transaction, and we name it a genesis transaction.

After the genesis transaction, the committee should periodically publish public input by spend-
ing the previous commitment UTXO.

Open the public input. The operator needs to open the public input and disclose it in the Assert
transaction. The transaction introspection8 is introduced. Currently, a very simple approach is the
Bitcoin Light Client9 by the Citrea team. For a better understanding of the overall solution, more
details will be described in Section 4.3.
7 A threshold signature is a digital signature that may have been created by an authorized subset of the private keys
which were previously used to create the corresponding public key. Threshold signatures can be verified using only
a single public key and a single signature, source: https://bitcoinops.org/en/topics/threshold-signature/

8 Introspection is the ability to inspect different parts of the transaction that is being evaluated while trying to spend
a specific coin, source: https://bitcoinmagazine.com/featured/bitcoin-covenants-what-are-they-and-what-do-they-
do.

9 Bitcoin Light Client: https://gist.github.com/ekrembal/2b26e224873a5a0a179d25a4b5f6e58a

7

Define the Universal Operator. GOAT BitVM2 introduces the concept of a Universal Operator,
which can switch to different specific roles to perform the corresponding functions.

We describe all the roles involved in GOAT BitVM2 in Table 1. Notably, the sequencer is
excluded from the table, as it is a purely L2 component from an architecture perspective, although
it is highly related from an economic perspective, hence we incldue all roles in our GOAT Rollup
Economic Paper.

Role Functions Honesty
Assump-
tion

Committee
– n-of-n signers for the pre-signed BitVM2 graph
– Commit the sequencer set

1/n

Operator Anyone can be an operator.

– Exchange PeggleBTC to native BTC with users
– Generate the validity proof, Kickoff the reimbursement, and

respond the challenge
– Generate the preimage of the hashed time-lock to each watch-

tower [6]

1/∞

Challenger Anyone can be a challenger

– Verify the validity of the reimbursement from operators of-
fchain;

– Submit the challenge transaction on Bitcoin to force the kick
off to unhappy path;

– Once the kickoff is on the unhappy path, and the operator
unveils all the execution trace(Circuit F below), verify finds
the fraud in the execution trace, and can spend the UTXO
from Assert transaction, and stop the operator to continue the
reimbursement.

1/∞

Watchtower A special kind of challenger, selected from the Sequencer candi-
dates, maintains the longest chain headers and spends the Watch-
tower output of the Kickoff transaction.

1/m

Relayer Transmitting correlation information between BTC and GOAT. 1/∞
Table 1: GOAT BitVM2 Role Definition

Considering that the system introduces multiple roles, each with different responsibilities and
costs, designing a fair and efficient roll-up economic model (and incentive mechanism) becomes
extremely challenging. The core idea of our economic design is to unify all these roles under a
single identity — the Universal Operator — and have operators rotate through the different roles
over time.

8

https://www.goat.network/
https://www.goat.network/

All roles must stake tokens on L2 and are assigned the responsibilities of a specific role in each
term.

This approach offers three major advantages: 1) Balancing Income and Costs. No operator
will always be just a sequencer (who earns transaction fees by producing new blocks) or just an
operator (who bears high costs such as staking and generating zero-knowledge proofs). In the long
term, every operator will rotate through both profit-generating and cost-incurring roles, achieving
a balance between earnings and expenses; 2) Equilibrium in Incentives. Operators know that if
they are assigned high-cost roles (such as the operator or publisher) this round, they are likely to
be assigned a profitable role like sequencer in the next round. Through cross-subsidization between
roles, the operators’ overall profit and loss are smoothed out; 3) Redundancy and Reliability. If an
operator fails or goes offline, the system can reassign their duties to others in the next round. Thus,
the system does not permanently depend on any particular Sequencer or Operator.

In summary, our system merges different behavioral roles (sequencer, operator, challenger, etc.)
into a single pool of staked operators who share all responsibilities.

Multi-round Randomized Challenge Mechanism. Initially, a challenger is selected to verify
a reimbursement request. If this challenger does not raise a challenge, another is randomly selected
from the challenger pool. If this new challenger detects fraud in the reimbursement process and
issues a challenge, all prior challengers who failed to act will have their stakes slashed. A cryp-
tographic sortition is employed to select the challenger randomly. More details will be shown in
Section 4.4.

4.2 Protocol Description

The entire transaction flow is presented in Fig. 3. Compared to the original BitVM2 protocol,
GOAT BitVM2’s enhancements are shown as follows. First, the Peg-out transaction is removed, each
operator becomes an Over-the-counter trader via Atomic Swap. Second, the slashing transaction’s
reciptant has been changed from any verifier to the committee, and committee will allocate the
rewards to valid verifier in L2. Last but the most important, the watchtower transactions(Bitcoin
Light Client mechanism) are integrated into the flow to commit the public input.

In the following, we present the Bridge in, Bridge Out, and Sequencer Set Commitment.

Bridge In. It consists of the following 7 steps:

1. The user constructs a Taproot Peg-in transaction (including Peg-In-Prepare, Peg-In-Confirm,
and Peg-In-Cancel branches), and broadcasts the Peg-In-Prepare transaction.

2. A Relayer monitors the execution of the Peg-in transaction and then initiates a deposit transac-
tion on the GOAT side contract, submitting the Txid of the Peg-In-Prepare transaction and the
unsigned Peg-In-Confirm transaction. Alternatively, the user can directly submit an outpoint.

3. After verifying the validity of the deposit transaction, the Committee constructs the BitVM2
transaction flow, pre-signs it, and broadcasts it to all Operators.

4. Upon receipt, operators presign certain transactions (such as Challenge and Kickoff timeout
transactions) and store the fully signed transaction flow on IPFS10.

10 InterPlanetary File System, https://ipfs.tech/

9

Peg-Out-Confirm

1 BTC connector-6

Peg-In-Deposit

 Alice
100BTC

100BTC
connector-z

Kickoff1

connector-6

connector-a

1 BTC
connector-1

connector-2

watchtower 1:
Longest chain

proof and
hashed timelock1

watchtower 2:
Longest chain

proof and
hashed timelock2

...
watchtower M:
Longest chain

proof and
hashed timelockM

Challenge

connector-a
Operator

1 BTC
1BTC

Disprove

1 BTC
connector-5

Slashing
connector-c
f(z6) != z7

Take-1

100 BTC
connector-0

Operator
101 BTC

connector-a

connector-3

1 BTC
connector-b Take-2

100 BTC
connector-0

Operator
101 BTC

connector-4

1 BTC
connector-5

connector-c

Peg-In-Refund

connnector-
z Alice 100BTC

Peg-In-Confirm

connnector-
z

100BTC
connector-0

StartTime

connector-2 Operator

StartTime-Timeout

connector-2
Slashing

1 BTC
connector-1

Kickoff2

1 BTC
connector-1

commit y

connector-3

1 BTC
connector-b

Kickoff-Timeout

connector-1 Slashing
In 2 weeks

in 2 weeks

In 3 days

AssertInitial

1 BTC
connector-b

1 BTC
connector-d

connector-e-1...

connector-e-2...

AssertCommit1

connector-e-1...
commit x, z1... connector-f-1

AssertCommit2

connector-e-2...
commit z100... connector-f-2

AssertFinal

1 BTC
connector-d connector-4

connector-f-1 1 BTC
connector-5

connector-f-2 connector-c

operator
any utxo

Committee

Committee

blue: committee pre_signed
pink: operator pre signed

Watchtower challenge

operator claims
preimage i

Operator preimage claim

preimage i

Operator claim timeout

watchtower
claim timeout

verifier
connector-1

0.5 week

Validators Claim

Committee OP_RETURN:
validator sets

Committee

Fig. 3: GOAT BitVM2 Transaction Structure

5. The user checks the transaction flow and verifies the pre-signatures. If everything is correct, the
user signs and broadcasts the Peg-In-Confirm transaction. The user may also choose to cancel
the Peg-in process.

6. Once the Relayers confirm the Peg-In-Confirm transaction on-chain, they submit the proof to
GOAT and issue PegBTC to the user.

7. Relayers form a decentralized message-passing network, but they are not required to ensure the
authenticity of the messages themselves.

Bridge Out. The user performs an Atomic Swap with the operator to exchange PegBTC for
BTC. After collecting a sufficient amount of PegBTC, the operator proceeds with the BitVM2
reimbursement process. Since the withdrawal is initiated by the operator, there is no need to verify
Peg-Out completion on Bitcoin. Instead, the operator burns the PegBTC on L2 and, along with
a corresponding ZKP, initiates the Kickoff transaction. As shown in Figure 4, a user and operator
complete the asset exchange via Atomic Swap. As shown in Figure 5, this is done through the
GOAT BitVM2 protocol.

Sequencer Set Commitment. The sequencer set is essential for verifying the L2 consensus. We
adopt a periodic commitment approach, where the Committee periodically uploads the sequencer
set to Bitcoin. The Committee periodically commits the sequencer set for the upcoming two weeks.

10

BitVM2

exchange BTC/PegBTC

Atomic Swap

burn PegBTC & withdraw BTC

BitVM2 Bridge

deposit BTC & mint PegBTC

User Operator

Fig. 4: Bridge Out

GOAT HTLC Contract BTC HTLC Tx

1. lock PegBTC with Hash

Unlocking conditions:
1. Operator with preimage
2. User after 48hours

User Operator

2. lock BTC with Hash

Unlocking conditions:
1. User with preimage
2. Operator after 48hours

3. unlock BTC & publish preimage

listen & get preimage

4. unlock PegBTC with preimage

Fig. 5: Cross-chain Atomic Swap

The sequencer set is stored via a Merkle tree, with the Merkle root published in the OP RETURN
field of a BTC transaction (or alternatively via a cost-less Taproot data submission). The Merkle
proof of each sequencer is also disclosed.

Since the committed sequencer set cannot be directly used by subsequent BitVM2 Asset or
Disprove transactions, we introduce transaction introspection to ensure the existence of historical
transactions can be verified.

Initiating the BitVM2 Reimbursement Process. It consists of the following 6 steps:

1. During the Kickoff transaction, the Operator must stake BTC and commit two pieces of infor-
mation: 1) The GOAT Withdraw Txid; 2) The latest blockhash of what the Operator considers
the longest chain.

2. The Challenger initiates a challenge to validate the legality of the Kickoff transaction:

11

Off-chain verification: 1) The Peg-Out transaction is confirmed on BTC, and the amount
matches the Peg-In amount in this BitVM2 instance; 2) In the GOAT contract, there is a
corresponding relationship between the Withdraw ID and the Peg-Out transaction.

On-chain verification: The Watchtower completes the longest chain challenge (or skips the
challenge, in which case the operator is assumed to have submitted the longest chain after a
timeout), as shown in the payout transaction structure diagram below.

3. If no challenge is submitted, the operator can claim the reimbursed BTC through the ‘Take 1’
transaction after the challenge period.

4. If the Challenger initiates a challenge, the Operator must submit an Assert transaction that
commits to the zk.Verifier of the decomposed circuit F (note: the diagram below is simplified.
In practice, there is also a time-locked Assert transaction. If the operator fails to submit in
time, conditions for a Slash operation are met).

5. Once the Assert transaction is broadcast, the Challenger must submit a Disprove transaction.
If the Challenger times out, the Operator completes the reimbursement via the ‘Take 2’ trans-
action.

6. A Verifier (not necessarily the Challenger) broadcasts the Disprove transaction and reveals the
corresponding faulty traces. If the challenge succeeds and the Disprove transaction is confirmed,
the Operator is denied reimbursement. Furthermore, the staked BTC in the Operator’s Kickoff
transaction is slashed and awarded to the Verifier as a reward.

The circuit in the proof part refers to the Algorithm 2.

4.3 Commit Sequencer Set by Transaction Introspection

Since Bitcoin transactions are stateless and do not share state across different transactions directly.
In BitVM2, state sharing across transactions must be achieved using one-time signatures. Other
solutions, such as ColliderVM [7], ensure consistent state transfer through hash collision techniques.

Sharing state across arbitrary transactions is harder. The SuperBlock scheme from the original
BitVM2 protocol is used to verify that the Operator-funded Peg-out transaction is on the canonical
chain —- the SuperBlock scheme is vulnerable to low-hashrate attacks.

The Citrea team proposed a Bitcoin Light Client mechanism. This mechanism uses N watch-
towers, the operator allocates each watchtower a hashed timelock, then each watchtower publishes
its longest chain headers as an output of the Kick-off transaction, the operator comfirms all the
watchtower’s longest chain data by disclosing the preimage of the hashed timelock. Once the oper-
ator discloses all the preimages, it can continue to publish Kick-off-2. In high-level summary, the
operator builds hashed time-lock channels with the watchtowers to get the different longest chain
information. In circuit f, we check that the public inputs, published by the committee of L2, match
what has been committed by the Bitcoin Light Client mechanism (by watchtowers or the operator
itself). Finally, if one of all the watchtowers is honest and provides a longer chain, the operator
cannot finish the reimbursement.

Instead of using Bitcoin Light Coin to watch the Peg-out transaction, GOAT BitVM2 uses it
to commit the decentralized sequencer’s public keys and consider those public keys as the public
input of circuit f.

12

We publish the sequencer’s public keys of the next 2 weeks in a transaction periodically, and
then prove that the transaction is on the Bitcoin by the light client mechanism. Since circuit f has
been committed in the Peg-in transaction. The operator must disclose the watchtower’s longest
chain information and the corresponding preimage. Then we can use the sequencer’s public keys
to check the signature of the block that includes the burning transction, following with the SPV of
the burning tx to the block, and the validity check of the block by the execution light client. We
present the sequencer set commitment scheme in the algorithm 1.

4.4 Multi-round Randomized Challenge Mechanism

In traditional Optimistic Rollup designs, any participant can act as a challenger to verify state
correctness and submit a fraud proof if an error is found. The security of this model relies on the
“1-of-n honest assumption” — as long as one honest participant exists, fraud can be detected.
However, this design presents two problems.

Resource Wastage from Redundant Computations. If 100 observers validate a block and it
turns out to be valid, the efforts of 99 observers are redundant. If each challenger trusts only their
own computation, it results in wasted computational resources, including: 1. The KickOff phase:
Checking the validity of the longest chain (including both L1 and L2); 2. The Disprove phase:
verifying through public input and the operator’s proof.

Insufficient Incentives Due to Lack of Rewards for Challenges. In the absence of fraud,
challengers are likely to spend a significant amount of time monitoring the challenge system without
receiving any rewards. This lack of incentives could lead to honest nodes lacking motivation to
participate in challenges, and, in some cases, a scenario where no challengers step forward may
arise.

Additionally, for BitVM2 Challenge transactions, crowdfunding is required to support these
challenges. However, there is a high probability that the contributor funding the challenge (e.g., a
stakeholder) may not be the actual challenger during the Disprove phase (which is usually carried
out by Bitcoin miners). As a result, crowd-funded assets from the challenge phase may not be
returned to the correct challenger, leading to misalignment of incentives.

Furthermore, the following attack scenarios are considered: 1) Malicious challenger attacking
honest reimbursements: A malicious challenger may attempt to falsely challenge a legitimate reim-
bursement. 2) Collusion between malicious challenger and Operator: The malicious challenger and
the Operator may conspire to avoid initiating a challenge.

For attack 1, since fraud proofs are verified in the Bitcoin script, any malicious challenger will
inevitably fail.

For attack 2, we introduce a multi-round randomized challenge mechanism with a one-vote veto
feature. Initially, a challenger is selected to verify a reimbursement request. If this challenger does
not raise a challenge, another is randomly selected from the challenger pool. If this new challenger
detects fraud in the reimbursement process and issues a challenge, all prior challengers who failed
to act will have their stakes slashed.

When a challenge is required (during the reimbursement process), multiple sequential challengers
are randomly selected, and challengers must have staked funds before submitting their challenges
on L2.

13

The random selection algorithm can use Verifiable Random Function (VRF) [8]. The selected
challengers are required to initiate a challenge in specific block duration in case of a fraudulent
reimbursement request. If a fraudulent operator creates an invalid proof, and a challenger failed to
challenge, but a successor managed to disprove it, the previous challenger will be slashed and lose
its stake, the successor can get all the rewards. This model can be supported by Lemma 1.

Lemma 1 (Challenger Success Probability). Assume that each challenger has an increasing
probability of success due to accumulated reward incentives, let p1 be the initialial challenge willing-
ness, ∆p be the probability increment after each failure, and n be the number of allowed challengers,
modeled as:

pi = min (p1 + (i− 1) ·∆p, 1)

Then, the cumulative probability that at least one of n challengers successfully challenges a fraud-
ulent prover is:

Psuccess(n) = 1−
n∏

i=1

(1−min (p1 + (i− 1) ·∆p, 1))

Suppose that the reimbursement request appears at block height H, the complete challenging
process and time window is shown in Figure 6, which illustrates three step-by-step periods.

– Initial Challenge Period. Whenever a reimbursement request appears on the Bitcoin network,
L2 triggers the VRF procedure and selects h challengers randomly, each challenger has 2 hours
to finish a challenge, and the total time window is set to 12 hours, about 72 blocks. With
Lemma 1, number of challengers is 6, and assume base success probability p1=0.1, and increase
per challenge ∆p=0.16, the Psuccess would be 0.9958, which is very confident.

– Assert Period. If no challenge appears before block height H+72, the Operator’s reimbursement
succeeds with transaction Take 1. Otherwise, the operator needs to respond with an Assert
transaction before block height H + 108.

– Disprove Period. After the Operator’s Assert transaction, everyone can submit a Disprove
transaction before block height H + 144.

Fig. 6: Full Challenge Period

The Randomized Challenge Mechanism is a form of weak consensus without strong consistency
guarantee, where a staked node is randomly selected (using cryptographic sortition) to act as the

14

challenger. The challenger verifies the current reimbursement process; if fraud behaviors are found,
they initiate a challenge to prevent the reimbursement from being completed optimistically. The
security assumption here only requires one honest challenger to ensure the system’s correctness.

Improved Capital Efficiency: This process is modeled on Lemma 1. Leveraging the decentralized
sequencers as an initial set for challenger candidate, helps increase the chanllenger’s willingness to
conduct a honest challenge, reducing challenge time and reimbursement delays. Using this method,
the challenge process can be shortened to under one day.

Security Assurance: The system remains open and fair, allowing any node the opportunity
to become a challenger. By introducing economic incentives and slashing mechanisms, it ensures
challengers are both motivated and reliable.

The successful challenger will receive a dual-component reward consisting of an initial reward
distributed via a Bitcoin-based covenant and penalties collected from selected challengers in L2 who
fail to fulfill their duties. Assuming at least 2/3 of sequencers are honest and will act as responsible
challengers, the probability of all six selected challengers failing to initiate a challenge becomes
smller than 0.004. This reward mechanism creates compounding incentives as successful challengers
accumulate escalating rewards when selected challengers remain inactive, ensuring robust protection
against malicious reimbursement attempts even during Bitcoin network congestion.

5 Conclusion

GOAT BitVM2 aims to build a practical zkRollup solution with the 1-of-n honesty assumption
based on the BitVM2 protocol, in combination with the decentralized sequencer and the proof
network.

1) GOAT BitVM2 solves the operator double-spending attack by committing the decentralized
sequencer’s public keys via the Bitcoin Light Client mechanism.

2) GOAT BitVM2 allows arbitrary-amount withdrawal via Atomic Swap between Bitcoin and
decentralized sequencer network, and removing the Peg-out transaction from the BitVM2 graph.
The operator burns its Pegged Bitcoin on GOAT Network and then starts the reimbursement.

3) GOAT BitVM2 improves the fairness of the challenger, by shifting the challenge incentive
from L1 to L2, thereby ensuring that challengers can receive their rewards in a more reliable manner.

4) GOAT BitVM2 introduces amulti-round randomized challenge mechanism to accelerate the
challenger election, make it possible to finish the entire challenge-response process in 1 day.

4) GOAT BitVM2 introduces Universal Operator Abstract, to balance the risks and benefits of
all the roles, enforcing that there are enough challengers in the entire system, this can significantly
improve the systematic robustness and security.

5) GOAT BitVM2 introduces an efficient proving method to reduce the operator’s proof gener-
ation to about 40 seconds.

GOAT BitVM2 becomes the most secure and efficient Bitcoin zkRollup protocol to date, sig-
nificantly accelerating the mass adoption of BitVM2.

References

1. Linus R. : Bitvm: Compute anything on bitcoin. URL: https://bitvm. org/bitvm. pdf-(12.12. 2023), 2023.

15

2. Linus R., Aumayr L., Zamyatin A, et al. : BitVM2: Bridging Bitcoin to Second Layers, 2024.
3. Nakamoto S. : Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.
4. Lamport L. : Lamport Signature - Short Private Key, 1979.
5. Team Z. : zkMIPS: Universal Zero-knowledge Virtual Machine on MIPS32r2 ISA, 2023.
6. Bal E., Aumayr L., İyidoğan A, et al. : Clementine: A Collateral-Efficient, Trust-Minimized, and Scalable Bitcoin

Bridge. Cryptology ePrint Archive, 2025.
7. Kolobov V I., Levy A M., Naor M. : ColliderVM: Stateful Computation on Bitcoin. Cryptology ePrint Archive,

2025.
8. Goldberg S., Reyzin L., Papadopoulos D, et al. : RFC 9381: Verifiable Random Functions (VRFs), 2023.

16

Algorithm 1: Check Sequencer Set On Chain

Input:
For all watchtower:
– [⟨headers, total work⟩]: The block headers and total work information representing the

longest chain as perceived by the watchtower.
– OTS: A one-time signature from the watchtower over the ⟨headers, total work⟩.
For operator:

– ⟨all headers, all total work⟩: The block headers and total work information representing
the longest chain as perceived by the operator.

– sequencer set: The set of public keys for the sequencer set, included as the Witness
information of the commitment transaction.

– sequencer set commit utxo: The UTXO information corresponding to the committed
sequencer set, including the txid, vout, and scriptPubKey (which contains the relevant
OP RETURN).

– sequencer set commit blockhash: The block hash where the sequencer set commitment
transaction is included.

Circuit:
correct watchtower = {}
largest total work = 0
// Iterate over all watchtowers
for each watchtower i:

if verify ots(watchtoweri):
insert (watchtoweri, 1) into correct watchtower

if not spv verify headers and total work(⟨headers, total work⟩i):
continue

if not spv verify utxo in blockhash(all headers, sequencer set commit blockhash,
sequencer set commit utxo):

continue
if not verify sequencer set in tx note(sequencer set commit utxo, sequencer set):

continue
total worki = calculate total work(watchtoweri)
if total worki > largest total work:

largest total work = total worki
if not spv verify operator all total work and headers(⟨all headers, all total work⟩):

fail verification()
if largest total work > operator.all total work:

fail verification()
else:

pass verification()
Output:

– sequencer set

– correct watchtower

– all headers

– sequencer set commit utxo

– sequencer set commit blockhash

17

Algorithm 2: GOAT BitVM2 OffChain Computation: Input
1. Check the Hashed Timelock Preimages are matching with correct watchtower;
2. Verify that the sequencer set commit utxo contains the correct sequencer set;
3. Verify correct execution of the L2 block;
4. Verify that the signature of the L2 block was made by a member of the sequencer set.

Input:
For each Watchtower:
– ⟨headers, total work⟩: The block headers and total work information representing the

longest chain that Watchtower i believes in.
– OTS: A one-time signature by Watchtower i over ⟨headers, total work⟩.
For the Operator:

– [⟨all headers, all total work⟩]: The block headers and total work information
representing the longest chain that the Operator believes in (private input).

– sequencer set: The public key set of the committed sequencer set, contained in the Witness
data of the commitment transaction.

– sequencer set commit utxo: The UTXO information of the sequencer set commitment
transaction, including txid, vout, and scriptPubKey (which includes the corresponding
OP RETURN); (private input).

– sequencer set commit blockhash: The block hash where the sequencer set commitment
transaction is included.

– Pre MPT State: The L2 state root corresponding to the last successfully verified
reimbursement.

– Post MPT State: The L2 state root corresponding to the block that contains the current
reimbursement transaction.

– SignatureOfPostMPTRoot: The signature made by a sequencer over the Post MPT State

(private input).
– Accounts: The account data used by transactions between Pre MPT State and Post MPT

State (private input).
– AccessList: The storage information of the contracts accessed by the L2 chain (private

input).
– Transaction List: The list of all transactions from Pre MPT State to Post MPT State

(private input).
– BurnTxProof: The proof that the Operator has burned the corresponding amount in the L2

transaction for reimbursement (private input).
It is assumed that the L2 system uses a VM (Virtual Machine) as its smart contract execution
engine.

18

Algorithm 3: GOAT BitVM2 OffChain Computation: Circuits and Outputs

Circuit:
(sequencer sets, blockhash, correct watchtower, . . .) =

CheckSequencerSetOnChain(
[⟨all headers, all total work⟩],
sequencer set,
sequencer set commit utxo,
sequencer set commit blockhash);

// Validate block execution
vmInstance = VM(Accounts, AccessList);
Post MPT State == vmInstance.execute(Pre MPT State, Transaction List);
//Validate the block hash
lbh := LargestBlockhash(all headers);
lbh == Hash(Post MPT State);
//Validate consensus information: ensure the latest state root is correctly signed by the
sequencer set
extractedSequencerSet := parseOpReturn(sequencer set commit utxo);
extractedSequencerSet == sequencer set;
verify(SignatureOfPostMPTRoot, extractedSequencerSet) == true;
//Validate the Burn transaction
SPV(BurnTxProof, Transaction List) == true;
Output:
– sequencer sets;
– Pre MPT State;
– Post MPT State;
– sequencer set commit blockhash.

19

	GOAT BitVM2 White Paper

